Translations:Help:FAQSpektrum:Governor/4/en: Difference between revisions
Importing a new version from external source |
Importing a new version from external source |
||
Line 3: | Line 3: | ||
<br /> | <br /> | ||
* If throttle response is too low the main rotor may speed up immediately in unloaded conditions, e.g. when the helicopter is descending and the RPM Governor will only give soft throttle inputs when the head speed decreases. | * If throttle response is too low the main rotor may speed up immediately in unloaded conditions, e.g. when the helicopter is descending and the RPM Governor will only give soft throttle inputs when the head speed decreases. | ||
* If the response is set too high on the other hand, the throttle may stutter audible when unloading the motor and/or the motor rpm will kick in very hard and overshoot after the rotor head was loaded and the rpm decreased, causing the tail rotor to turn due to the immediate load change. | * If the response is set too high on the other hand, the throttle may stutter audible when unloading the motor and/or the motor rpm will kick in very hard and overshoot after the rotor head was loaded and the rpm decreased, causing the tail rotor to turn due to the immediate load change.<br /> | ||
The height of throttle response highly depends on factors such as heli size (blade size), motor power and performance and/or the throttle response behavior of the speed controller (when flying an electric heli). If you need to adjust the throttle response, we recommend to start with the lowest value and increase accordingly. Also you should use a lower head speed for adjustment as here you can see the effect more distinct. | <br /> | ||
The height of throttle response highly depends on factors such as heli size (blade size), motor power and performance and/or the throttle response behavior of the speed controller (when flying an electric heli). If you need to adjust the throttle response, we recommend to start with the lowest value and increase accordingly. Also you should use a lower head speed for adjustment as here you can see the effect more distinct. Only increase the throttle response stepwise and make sure the throttle will not start to oscillate.<br /> | |||
<br /> | |||
{{WARNING_QUOTE|Note that with nitro helicopters high throttle response can cause the motor to quit when the throttle is opened too fast. With electric helicopters changing the throttle very fast can cause the speed controller to overheat and especially hard changes from unloaded to loaded conditions can cause incorrect commutations of the ESC (depending on the type of motor) which can damage the ESC if this does not have appropriate protection mechanisms.}}<br /> | |||
<br /> | <br /> | ||
<br /> | <br /> |
Latest revision as of 13:33, 17 March 2023
The setting of menu point I determines how fast and hard the system will open or close the throttle when the rotor speed changes. With ideal throttle response you get a very consistent rotor head speed. When loading and unloading the rotor disc, the head speed should recover quickly and definite but not hectic.
- If throttle response is too low the main rotor may speed up immediately in unloaded conditions, e.g. when the helicopter is descending and the RPM Governor will only give soft throttle inputs when the head speed decreases.
- If the response is set too high on the other hand, the throttle may stutter audible when unloading the motor and/or the motor rpm will kick in very hard and overshoot after the rotor head was loaded and the rpm decreased, causing the tail rotor to turn due to the immediate load change.
The height of throttle response highly depends on factors such as heli size (blade size), motor power and performance and/or the throttle response behavior of the speed controller (when flying an electric heli). If you need to adjust the throttle response, we recommend to start with the lowest value and increase accordingly. Also you should use a lower head speed for adjustment as here you can see the effect more distinct. Only increase the throttle response stepwise and make sure the throttle will not start to oscillate.
Note that with nitro helicopters high throttle response can cause the motor to quit when the throttle is opened too fast. With electric helicopters changing the throttle very fast can cause the speed controller to overheat and especially hard changes from unloaded to loaded conditions can cause incorrect commutations of the ESC (depending on the type of motor) which can damage the ESC if this does not have appropriate protection mechanisms.