Changes

Jump to navigation Jump to search
no edit summary
Line 33: Line 33:  
We recommend to use the HeadingLock mode. Here the tail is actively controlled by the gyro system. You will barely feel any external influences. By giving rudder stick input, the pilot only commands the gyro how fast it has to turn the tail. When the stick is in center position the tail gyro will ensure that the tail keeps locked into position by any means. This simplifies the control significantly. In hovering flight the beginner can fully concentrate on the control of cyclic and collective pitch and the advanced pilot can perform 3D - flight maneuvers such as backwards flying quite easily. The only disadvantage of HeadingLock-Mode is that the rudder must be steered by the pilot when flying curves. Otherwise the gyro will try to keep the tail aligned with the initial direction.<br />
 
We recommend to use the HeadingLock mode. Here the tail is actively controlled by the gyro system. You will barely feel any external influences. By giving rudder stick input, the pilot only commands the gyro how fast it has to turn the tail. When the stick is in center position the tail gyro will ensure that the tail keeps locked into position by any means. This simplifies the control significantly. In hovering flight the beginner can fully concentrate on the control of cyclic and collective pitch and the advanced pilot can perform 3D - flight maneuvers such as backwards flying quite easily. The only disadvantage of HeadingLock-Mode is that the rudder must be steered by the pilot when flying curves. Otherwise the gyro will try to keep the tail aligned with the initial direction.<br />
 
<br />
 
<br />
 +
 +
===Adjusting the dials===
 +
'''To adjust the dials please only use the supplied plastic BEASTX adjustment tool to prevent damage to the dials!'''
 +
[[File:Dials_overview|noframe|none]]<br />
 +
<br />
 +
'''Dial 1: Cyclic gain'''
 +
The swash gyro gain (cyclic gain) can be set by dial 1 from 50% up to 150%. Turn dial 1 clockwise to increase the gain. The factory setting is horizontal which corresponds to 100% swashplate gain. For your first flights we suggest not changing this setting. However, when using very small helicopters (such as 250 or 450 size), reduce the cyclic gain by 3 marks (=75% gain) as with such small helicopters the control loop tends to overcompensate more easily.<br />
 +
<br />
 +
In general the higher the gain the harder the helicopter will stop after cyclic moves and the helicopter will fly more stable and exact in the air. If the gain is too high, the helicopter will tend to oscillate at high frequency especially on the elevator axis. Due to their low mass, this behavior will occur sooner on small helicopters, so typically these do not need as much gain as large helicopters.<br />
 +
<br />
 +
If the gain is too low the helicopter does not stop precisely and overshoots the more or less after a cyclic movement. Additionally it feels unstable and sluggish in fast forward flight and when hovering. In general low gain will allow the helicopter to have more life of its own and so it will not react to stick inputs as precise and immediate as the pilot expects it.<br />
 +
<br />
 +
'''Dial 2: Cyclic feed forward'''
 +
This part mixes some amount of stick input directly to the servos, bypassing the control loop. If correctly adjusted, this relieves the control loop which will work more efficiently by only having to make residual corrections. Factory setting of the dial is horizontal which provides a good setup in most cases. Turn dial 2 clockwise to increase the cyclic feed forward. This will cause more cyclic stick input going directly to aileron and elevator on the swashplate. Decreasing the direct stick feed forward will do the opposite.<br />
 +
<br />
 +
If the cyclic feed forward is too high the stick input will over control the cyclic input. Eventually the control loop needs then to steer back and compensate the unwanted cyclic movement. Even though you get the impression to have a more direct and immediate control over the servos with high feed forwared values, unwanted side effects may appear, like pitch backs on cyclic stops and imprecise fast forward flight that show the control loop not working properly.<br />
 +
<br />
 +
If the direct cyclic feed forward is too low, the helicopter will feel softer, slower and less direct. The optimal point depends of many factors like blades, servos, head speed, size and mass of the helicopter. Ideally you can increase the feed forward just as high as possible without any side effects happening. So you get a quite natural stick feeling and on the other hand the control loop is supported as good as possible. At delivery the dial is in the middle which should be a good starting point for most helicopters. Before adjusting the cyclic feed forward you should try to find the optimal maximum cyclic gain first (dial 1). Then adjust the cyclic feed forward and after that, you may have to adjust the cyclic gain once again, as both parameters interact to each other.
 
</translate>
 
</translate>
Bureaucrats, Administrators, translate-proofr
15,475

edits

Navigation menu