Changes

Jump to navigation Jump to search
Importing a new version from external source
Line 27: Line 27:  
|}<br />
 
|}<br />
 
<br />
 
<br />
In Normal-Rate mode the tail gyro of MICROBEAST PLUS only acts as dampening that decelerates sudden rotations caused by external influences. Slow, constant rotational movements will not be compensated. Thus the tail does not drift in hover due to the main rotor torque, a perfect mechanical adjustment of the tail rotor is essential (see the section to [[Manuals:MB_Plus:Setupmenu_D|Setup menu point '''D''']]). But even with perfect mechanical adjustment you will always encounter some drift on the rudder axis due to crosswinds and the pilot has to constantly perform corrections when doing hovering flight. In high-speed flight on the other hand the tail will be aligned in flight direction by the wind, so curves can be flown very dynamically and the pilot doesn‘t have to constantly concentrate on controlling the rudder.<br />
+
In '''Normal-Rate mode''' the tail gyro of MICROBEAST PLUS only acts as dampening that decelerates sudden rotations caused by external influences. Slow, constant rotational movements will not be compensated. Thus the tail does not drift in hover due to the main rotor torque, a perfect mechanical adjustment of the tail rotor is essential (see the section to [[Manuals:MB_Plus:Setupmenu_D|Setup menu point '''D''']]). But even with perfect mechanical adjustment you will always encounter some drift on the rudder axis due to crosswinds and the pilot has to constantly perform corrections when doing hovering flight. In high-speed flight on the other hand the tail will be aligned in flight direction by the wind, so curves can be flown very dynamically and the pilot doesn‘t have to constantly concentrate on controlling the rudder.<br />
 
<br />
 
<br />
We recommend to use the HeadingLock mode. Here the tail is actively controlled by the gyro system. You will barely feel any external influences. By giving rudder stick input, the pilot only commands the gyro how fast it has to turn the tail. When the stick is in center position the tail gyro will ensure that the tail keeps locked into position by any means. This simplifies the control significantly. In hovering flight the beginner can fully concentrate on the control of cyclic and collective pitch and the advanced pilot can perform 3D - flight maneuvers such as backwards flying quite easily. The only disadvantage of HeadingLock-Mode is that the rudder must be steered by the pilot when flying curves. Otherwise the gyro will try to keep the tail aligned with the initial direction.<br />
+
We recommend to use the '''HeadingLock mode'''. Here the tail is actively controlled by the gyro system. You will barely feel any external influences. By giving rudder stick input, the pilot only commands the gyro how fast it has to turn the tail. When the stick is in center position the tail gyro will ensure that the tail keeps locked into position by any means. This simplifies the control significantly. In hovering flight the beginner can fully concentrate on the control of cyclic and collective pitch and the advanced pilot can perform 3D - flight maneuvers such as backwards flying quite easily. The only disadvantage of HeadingLock-Mode is that the rudder must be steered by the pilot when flying curves. Otherwise the gyro will try to keep the tail aligned with the initial direction.<br />
 +
<br />
 +
{{QUOTE|To gain better tail gyro performance also check for correct servo horn length. If the tail gain in general is very low and the rudder tends to oscillate very easily move the linkage ball on the servo horn further inwards to the center. If on the other hand you have a very large amount of tail gain and the tail gyro still does not seem to be capable to hold the tail rotor in any flight condition, move the linkage ball on the servo horn further out from the center, to get faster response speed when the gyro needs to control the rudder. Also you may use different (larger) tail rotor blades or higher tail rotor speed to gain better holding force.}}
 
<br />
 
<br />
   Line 40: Line 42:  
The swash gyro gain (cyclic gain) can be set by dial 1 from 50% up to 150%. Turn dial 1 clockwise to increase the gain. The factory setting is horizontal which corresponds to 100% swashplate gain. For your first flights we suggest not changing this setting. However, when using very small helicopters (such as 250 or 450 size), reduce the cyclic gain by 3 marks (=75% gain) as with such small helicopters the control loop tends to overcompensate more easily.<br />  
 
The swash gyro gain (cyclic gain) can be set by dial 1 from 50% up to 150%. Turn dial 1 clockwise to increase the gain. The factory setting is horizontal which corresponds to 100% swashplate gain. For your first flights we suggest not changing this setting. However, when using very small helicopters (such as 250 or 450 size), reduce the cyclic gain by 3 marks (=75% gain) as with such small helicopters the control loop tends to overcompensate more easily.<br />  
 
<br />
 
<br />
In general the higher the gain the harder the helicopter will stop after cyclic moves and the helicopter will fly more stable and exact in the air. If the gain is too high, the helicopter will tend to oscillate at high frequency especially on the elevator axis. Due to their low mass, this behavior will occur sooner on small helicopters, so typically these do not need as much gain as large helicopters.<br />
+
In general the higher the gain, the harder the helicopter will stop after cyclic moves and the more stable and exact the helicopter will fly. But if the gain is too high, the helicopter will tend to oscillate at high frequency especially on the elevator axis. Due to their low mass, this behavior will occur sooner on small helicopters, so typically these do not need as much gain as large helicopters.<br />
 +
<br />
 +
On the other hand, in case the gain is too low, the helicopter does not stop precisely and overshoots the more or less after a cyclic movement. Additionally, it feels unstable and sluggish in fast forward flight and when hovering. In general, low gain will allow the helicopter to have more life of its own and so it will not react to stick inputs as precise and immediate as the pilot expects it.<br />
 
<br />
 
<br />
If the gain is too low the helicopter does not stop precisely and overshoots the more or less after a cyclic movement. Additionally it feels unstable and sluggish in fast forward flight and when hovering. In general low gain will allow the helicopter to have more life of its own and so it will not react to stick inputs as precise and immediate as the pilot expects it.<br />
+
Ideally you set the gain to the sweet spot, at which the system reacts as precise and stable as possible without creating any negative effects.<br />
 
<br />
 
<br />
 
<br />
 
<br />
 
'''Dial 2: Cyclic feed forward'''<br />
 
'''Dial 2: Cyclic feed forward'''<br />
This part mixes some amount of stick input directly to the servos, bypassing the control loop. If correctly adjusted, this relieves the control loop which will work more efficiently by only having to make residual corrections. Factory setting of the dial is horizontal which provides a good setup in most cases. Turn dial 2 clockwise to increase the cyclic feed forward. This will cause more cyclic stick input going directly to aileron and elevator on the swashplate. Decreasing the direct stick feed forward will do the opposite.<br />
+
This part mixes some amount of stick input directly to the servos, bypassing the control loop. If correctly adjusted, the feed forward relieves the control loop so it will work more efficiently by only having to make residual corrections. Factory setting of the dial is horizontal which provides a good setup in most cases. Turn dial 2 clockwise to increase the cyclic feed forward. This will cause more cyclic stick input going directly to aileron and elevator on the swashplate. Decreasing the direct stick feed forward will do the opposite.<br />
 
<br />
 
<br />
If the cyclic feed forward is too high the stick input will over control the cyclic input. Eventually the control loop needs then to steer back and compensate the unwanted cyclic movement. Even though you get the impression to have a more direct and immediate control over the servos with high feed forwared values, unwanted side effects may appear, like pitch backs on cyclic stops and imprecise fast forward flight that show the control loop not working properly.<br />
+
In case the cyclic feed forward is set too high, the stick input will over control the cyclic input from the control loop. Eventually the control loop needs then to steer back and compensate the unwanted cyclic movement. Even though you get the impression to have a more direct and immediate control over the servos with high feed forward values, unwanted side effects may appear, like pitching back on cyclic stops and imprecise fast forward flight.<br />
 
<br />
 
<br />
If the direct cyclic feed forward is too low, the helicopter will feel softer, slower and less direct. The optimal point depends of many factors like blades, servos, head speed, size and mass of the helicopter. Ideally you can increase the feed forward just as high as possible without any side effects happening. So you get a quite natural stick feeling and on the other hand the control loop is supported as good as possible. At delivery the dial is in the middle which should be a good starting point for most helicopters. Before adjusting the cyclic feed forward you should try to find the optimal maximum cyclic gain first (dial 1). Then adjust the cyclic feed forward and after that, you may have to adjust the cyclic gain once again, as both parameters interact to each other.<br />
+
If the direct cyclic feed forward is too low, the helicopter will feel softer, slower and less "connected". The optimal point depends of many factors like blades, servos, head speed, size and mass of the helicopter. Ideally you can increase the feed forward just as high as possible without any negative effects happening. So you get a quite natural stick feeling and the control loop is supported as good as possible. Before adjusting the cyclic feed forward you should try to find the optimal maximum cyclic gain first (see above). Then adjust the cyclic feed forward and after that, you may have to adjust the cyclic gain once again, as both parameters interact to each other.<br />
 
<br />
 
<br />
 
{{QUOTE|The cyclic feed forward does not affect the maximum rate of rotation! If the helicopter turns too slow, you should check the settings of the swashplate limiter in [[Manuals:MB_Plus:Setupmenu_L|Setup menu point '''L''']], change the control behavior at [[Manuals:MB_Plus:Parametermenu_B|Parameter menu point '''B''']] or increase the servo travels or “Dual Rate“ setup of your transmitter.<br />
 
{{QUOTE|The cyclic feed forward does not affect the maximum rate of rotation! If the helicopter turns too slow, you should check the settings of the swashplate limiter in [[Manuals:MB_Plus:Setupmenu_L|Setup menu point '''L''']], change the control behavior at [[Manuals:MB_Plus:Parametermenu_B|Parameter menu point '''B''']] or increase the servo travels or “Dual Rate“ setup of your transmitter.<br />
Line 57: Line 61:  
<br />
 
<br />
 
'''Dial 3: Tail gyro response'''<br />
 
'''Dial 3: Tail gyro response'''<br />
Turn dial 3 clockwise to increase the tail gyro response. Turning dial 3 counter clockwise will decrease it. Increasing the tail dynamic will lead to harder stopping behavior and more aggressive response to rudder stick inputs. If the response is too high the tail will bounce back shortly after a hard stop and feel spongy when making fast direction changes. If the dynamic is set too low the tail feels dull and stopping might be too soft. Ideally the tail should stop perfectly to the point without making any flapping noises.<br />
+
Turn dial 3 clockwise to increase the tail gyro response. Turning dial 3 counter clockwise will decrease it. Increasing the gyro response will cause a harder stop and quicker response to rudder stick inputs. But if the response is too high, the tail will bounce back after a hard stop and feel spongy when making fast direction changes. If the response is set too low on the other hand, the rudder control feels dull and stopping might be too soft. Ideally the tail should stop perfectly to the point without making any flapping noises.<br />
 
<br />
 
<br />
 
Factory setting of the dial 3 is horizontal which provides a good setup in most cases. You have to make sure the maximum possible tail gyro gain has already been determined (see above) before adjusting the tail gyro response. Then after adjusting the tail gyro response you may have to adjust the tail gyro gain once again, as these parameters interact to each other.<br />
 
Factory setting of the dial 3 is horizontal which provides a good setup in most cases. You have to make sure the maximum possible tail gyro gain has already been determined (see above) before adjusting the tail gyro response. Then after adjusting the tail gyro response you may have to adjust the tail gyro gain once again, as these parameters interact to each other.<br />
7,227

edits

Navigation menu